Advertisement

Pain Recognition in Fish

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Exotic Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sneddon L.U.
        Anatomical and electrophysiological analysis of the trigeminal nerve in a teleost fish, Oncorhynchus mykiss.
        Neurosci Lett. 2002; 319: 167-171
        • Sneddon L.U.
        Pain in aquatic animals.
        J Exp Biol. 2015; 218: 967-976
        • Sneddon L.U.
        Comparative physiology of nociception and pain.
        Physiology. 2018; 33: 63-73
        • Sneddon L.U.
        Evolution of nociception and pain: evidence from fish models.
        Phil Trans R Soc B. 2019; 374: 20190290
        • Nordgreen J.
        • Garner J.P.
        • Janczak A.M.
        • et al.
        Thermonociception in fish: effects of two different doses of morphine on thermal threshold and post-test behaviour in goldfish (Carassius auratus).
        Appl Anim Behav Sci. 2009; 119: 101-107
        • Bjørge M.H.
        • Nordgreen J.
        • Janczak A.M.
        • et al.
        Behavioural changes following intraperitoneal vaccination in Atlantic salmon (Salmo salar).
        Appl Anim Behav Sci. 2011; 133: 127-135
        • Reilly S.C.
        • Quinn J.P.
        • Cossins A.R.
        • et al.
        Behavioural analysis of a nociceptive event in fish: comparisons between three species demonstrate specific responses.
        Appl Anim Behav Sci. 2008; 114: 248-259
        • Dunlop R.
        • Laming P.
        Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss).
        J Pain. 2005; 6: 561-568
        • Roques J.A.C.
        • Abbink W.
        • Geurds F.
        • et al.
        Tailfin clipping, a painful procedure: studies on Nile tilapia and common carp.
        Physiol Behav. 2010; 101: 533-540
        • Roques J.A.C.
        • Abbink W.
        • Chereau G.
        • et al.
        Physiological and behavioral responses to an electrical stimulus in Mozambique tilapia (Oreochromis mossambicus).
        Fish Physiol Biochem. 2012; 38: 1019-1028
        • Wolkers C.P.B.
        • Junior A.B.
        • Menescal-de-Oliveira L.
        • et al.
        GABAA-benzodiazepine receptors in the dorsomedial (Dm) telencephalon modulate restraint-induced antinociception in the fish Leporinus macrocephalus.
        Physiol Behav. 2015; 147: 175-182
        • Thomson J.S.
        • Deakin A.G.
        • Cossins A.R.
        • et al.
        Acute and chronic stress prevents responses to pain in zebrafish: evidence for stress-induced analgesia.
        J Exp Biol. 2020; 223: jeb224527
        • de Abreu M.S.
        • Giacomini A.C.
        • Genario R.
        • et al.
        Understanding early-life pain and its effects on adult human and animal emotionality: Translational lessons from rodent and zebrafish models.
        Neurosci Lett. 2022; 768: 136382
        • Deakin A.G.
        • Buckley J.
        • AlZu’bi H.S.
        • et al.
        Automated monitoring of behaviour in zebrafish after invasive procedures.
        Sci Rep. 2019; 9: 1-13
        • Sneddon L.U.
        The evidence for pain in fish: the use of morphine as an analgesic.
        Appl Anim Behav Sci. 2003; 83: 153-162
        • Sloman K.A.
        • Bouyoucos I.A.
        • Brooks E.J.
        • et al.
        Ethical considerations in fish research.
        J Fish Biol. 2019; 94: 556-577
        • Sneddon L.U.
        Pain in laboratory animals: A possible confounding factor?.
        Altern Lab Anim. 2017; 45: 161-164
        • Sneddon L.U.
        • Halsey L.G.
        • Bury N.R.
        Considering aspects of the 3Rs principles within experimental animal biology.
        J Exp Biol. 2017; 220: 3007-3016
        • European Commission
        Statistical report, SWD 204: executive summary parts A and B and Part C. Data of 2018 from 28 member states and Norway.
        European Union, 2018 (Accessed February 24, 2022)
        • Noble C.
        • Gismervik K.
        • Iversen M.H.
        • et al.
        Welfare Indicators for farmed Atlantic salmon: tools for assessing fish welfare. In: Nofima. 2018.
        (Available at:) (Accessed February 24, 2022)
        • Sneddon L.U.
        • Elwood R.W.
        • Adamo S.A.
        • et al.
        Defining and assessing animal pain.
        Anim Behav. 2014; 97: 201-212
      1. Le Neindre P., Guémené D., Guichet J., et al. Animal pain: identifying, understanding and minimising pain in farm animals. Multidisciplinary scientific assessment, Summary of the expert report INRA: Paris. p. 98, 2009. Available at: https://www.inrae.fr/sites/default/files/pdf/05e1f915d62a32c84cf9865b9d6cba39.pdf. Accessed August 15, 2022.

        • Prunier A.
        • Mounier L.
        • Le Neindre P.
        • et al.
        Identifying and monitoring pain in farm animals: a review.
        Animal. 2013; 7: 998-1010
        • Sneddon L.U.
        • Wolfenden D.C.
        • Thomson J.S.
        Stress management and welfare.
        in: Schreck C.B. Tort L. Farrell A.P. Biology of stress in fish: fish physiology. Academic Press, London2016: 463-539
        • Wendelaar Bonga S.E.
        The stress response in fish.
        Physiol Rev. 1997; 77: 591-625
        • White L.J.
        • Thomson J.S.
        • Pounder K.C.
        • et al.
        The impact of social context on behaviour and the recovery from welfare challenges in zebrafish, Danio rerio.
        Anim Behav. 2017; 132: 189-199
        • Sneddon L.U.
        Pain Perception in Fish: Evidence and Implications for the Use of Fish.
        J Conscious Stud. 2011; 18: 209-229
        • Ashley P.J.
        • Ringrose S.
        • Edwards K.L.
        • et al.
        Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout.
        Anim Behav. 2009; 77: 403-410
        • Deakin A.G.
        • Spencer J.W.
        • Cossins A.R.
        • et al.
        Welfare challenges influence the complexity of movement: fractal analysis of behaviour in zebrafish.
        Fishes. 2019; 4: 8
        • Simonetti R.B.
        • Santos Marques L.
        • Streit Jr., D.P.
        • et al.
        Zebrafish (Danio rerio): ethics in animal experimentation.
        IOSR J Agric Vet Sci Ver. 2016; 9: 2319-2372
        • Thomson J.S.
        • Al-Temeemy A.A.
        • Isted H.
        • et al.
        Assessment of behaviour in groups of zebrafish (Danio rerio) using an intelligent software monitoring tool, the chromatic fish analyser.
        J Neurosci Methods. 2019; 328: 108433
        • Sneddon L.U.
        Clinical anesthesia and analgesia in fish.
        J Exot Pet Med. 2012; 21: 32-43
        • Martınez V.
        • Coutinho S.
        • Thakur S.
        • et al.
        Differential effects of chemical and mechanical colonic irritation on behavioral pain response to intraperitoneal acetic acid in mice.
        Pain. 1999; 81: 179-186
      2. NC3Rs. NC3Rs Grimace Scales 2022. In NC3Rs.
        (Available at:) (Accessed February 24, 2022)
        • Martins T.
        • Valentim A.M.
        • Pereira N.
        • et al.
        Anaesthesia and analgesia in laboratory adult zebrafish: a question of refinement.
        Lab Anim. 2016; 50: 476-488
        • Dash S.
        • Das S.
        • Samal J.
        • et al.
        Epidermal mucus, a major determinant in fish health: a review.
        Iran J Vet Res. 2018; 19: 72
        • Harms C.A.
        • Lewbart G.A.
        • Swanson C.R.
        • et al.
        Behavioral and clinical pathology changes in koi carp (Cyprinus carpio) subjected to anesthesia and surgery with and without intra-operative analgesics.
        Comp Med. 2005; 55: 221-226
        • Costa F.V.
        • Rosa L.V.
        • Quadros V.A.
        • et al.
        Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model.
        Behav Brain Res. 2019; 359: 570-578
        • Schroeder P.G.
        • Sneddon L.U.
        Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach.
        Appl Anim Behav Sci. 2017; 187: 93-102
        • Maximino C.
        Modulation of nociceptive-like behavior in zebrafish (Danio rerio) by environmental stressors.
        Psychol Neurosci. 2011; 4: 149-155
        • Correia A.D.
        • Cunha S.R.
        • Scholze M.
        • Stevens E.D.
        A Novel Behavioral Fish Model of Nociception for Testing Analgesics.
        Pharmaceuticals. 2011; 4: 665-680