Advertisement
Review Article| Volume 26, ISSUE 1, P121-149, January 2023

Pain Recognition in Rodents

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Exotic Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dohoo S.E.
        • Dohoo I.R.
        Postoperative use of analgesics in dogs and cats by Canadian veterinarians.
        Can Vet J. 1996; 37: 546-551
        • Hunt J.R.
        • Knowles T.G.
        • Lascelles B.D.X.
        • et al.
        Prescription of perioperative analgesics by UK small animal veterinary surgeons in 2013.
        Vet Rec. 2015; 176: 493
        • Capner C.A.
        • Lascelles B.D.
        • Waterman-Pearson A.E.
        Current British veterinary attitudes to perioperative analgesia for dogs.
        Vet Rec. 1999; 145: 95-99
        • Stokes E.L.
        • Flecknell P.A.
        • Richardson C.A.
        Reported analgesic and anaesthetic administration to rodents undergoing experimental surgical procedures.
        Lab Anim. 2009; 43: 149-154
        • Uhlig C.
        • Krause H.
        • Koch T.
        • et al.
        Anesthesia and monitoring in small laboratory mammals used in anesthesiology, respiratory and critical care research: a systematic review on the current reporting in top-10 impact factor ranked journals.
        PLoS One. 2015; 10: e0134205
        • Carbone L.
        • Austin J.
        Pain and laboratory animals: publication practices for better data reproducibility and better animal welfare.
        PLoS One. 2016; 11: e0155001
        • Keown A.J.
        • Farnworth M.J.
        • Adams N.J.
        Attitudes towards perception and management of pain in rabbits and guinea pigs by a sample of veterinarians in New Zealand.
        N Z Vet J. 2011; 59: 305-310
        • Hugonnard M.
        • Leblond A.
        • Keroack S.
        • et al.
        Attitudes and concerns of French veterinarians towards pain and analgesia in dogs and cats.
        Vet Anaesth Analg. 2004; 31: 154-163
        • Mogil J.S.
        • Crager S.E.
        What should we be measuring in behavioral studies of chronic pain in animals?.
        PAIN. 2004; 112: 12-15
        • Huss M.K.
        • Felt S.A.
        • Pacharinsak C.
        Influence of pain and analgesia on orthopedic and wound-healing models in rats and mice.
        Comp Med. 2019; 69: 535-545
        • Taylor D.K.
        Influence of pain and analgesia on cancer research studies.
        Comp Med. 2019; 69: 501-509
        • Mellor D.J.
        Welfare-aligned sentience: enhanced capacities to experience, interact, anticipate, choose and survive.
        Animals (Basel). 2019; 9: E440
      1. The Cambridge Declaration on Consciousness. Animal Cognition.
        (Available at:) (Accessed January 11, 2022)
      2. Terminology | International Association for the Study of Pain. International Association for the Study of Pain (IASP).
        (Available at:) (Accessed January 11, 2022)
        • Langford D.J.
        • Bailey A.L.
        • Chanda M.L.
        • et al.
        Coding of facial expressions of pain in the laboratory mouse.
        Nat Methods. 2010; 7: 447-449
        • Mendl M.
        • Burman O.H.P.
        • Paul E.S.
        An integrative and functional framework for the study of animal emotion and mood.
        Proc Biol Sci. 2010; 277: 2895-2904
        • Clark L.
        Chronic (or persistent) postsurgical pain: a veterinary problem?.
        Vet Anaesth Analg. 2021; 48: 4-6
        • Streiner D.L.
        • Norman G.R.
        • Cairney J.
        Health measurement scales: a practical guide to their development and use. Oxford University Press.
        • Streiner D.L.
        A checklist for evaluating the usefulness of rating scales.
        Can J Psychiatry. 1993; 38: 140-148
        • Mogil J.S.
        • Pang D.S.J.
        • Silva Dutra G.G.
        • et al.
        The development and use of facial grimace scales for pain measurement in animals.
        Neurosci Biobehav Rev. 2020; 116: 480-493
        • Oliver V.
        • De Rantere D.
        • Ritchie R.
        • et al.
        Psychometric assessment of the Rat Grimace Scale and development of an analgesic intervention score.
        PLoS One. 2014; 9: e97882
        • Evangelista-Vaz R.
        • Bergadano A.
        • Arras M.
        • et al.
        Analgesic efficacy of subcutaneous-oral dosage of tramadol after surgery in C57BL/6J Mice.
        J Am Assoc Lab Anim Sci. 2018; 57: 368-375
        • Brondani J.T.
        • Mama K.R.
        • Luna S.P.L.
        • et al.
        Validation of the English version of the UNESP-Botucatu multidimensional composite pain scale for assessing postoperative pain in cats.
        BMC Vet Res. 2013; 9: 143
        • Reid J.
        • Nolan A.
        • Hughes J.
        • et al.
        Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score.
        Anim Welfare. 2007; 16: 97-104
        • Holton L.
        • Reid J.
        • Scott E.M.
        • et al.
        Development of a behaviour-based scale to measure acute pain in dogs.
        Vet Rec. 2001; 148: 525-531
        • Roughan J.V.
        • Flecknell P.A.
        Effects of surgery and analgesic administration on spontaneous behaviour in singly housed rats.
        Res Vet Sci. 2000; 69: 283-288
        • Roughan J.V.
        • Flecknell P.A.
        Behavioural effects of laparotomy and analgesic effects of ketoprofen and carprofen in rats.
        Pain. 2001; 90: 65-74
        • Roughan J.V.
        • Flecknell P.A.
        Evaluation of a short duration behaviour-based post-operative pain scoring system in rats.
        Eur J Pain. 2003; 7: 397-406
        • Roughan J.V.
        • Flecknell P.A.
        • Davies B.R.
        Behavioural assessment of the effects of tumour growth in rats and the influence of the analgesics carprofen and meloxicam.
        Lab Anim. 2004; 38: 286-296
        • Wright-Williams S.L.
        • Courade J.P.
        • Richardson C.A.
        • et al.
        Effects of vasectomy surgery and meloxicam treatment on faecal corticosterone levels and behaviour in two strains of laboratory mouse.
        Pain. 2007; 130: 108-118
        • Wright-Williams S.
        • Flecknell P.A.
        • Roughan J.V.
        Comparative effects of vasectomy surgery and buprenorphine treatment on faecal corticosterone concentrations and behaviour assessed by manual and automated analysis methods in C57 and C3H mice.
        PLoS One. 2013; 8: e75948
        • Leung V.S.Y.
        • Benoit-Biancamano M.O.
        • Pang D.S.J.
        Performance of behavioral assays: the Rat Grimace Scale, burrowing activity and a composite behavior score to identify visceral pain in an acute and chronic colitis model.
        Pain Rep. 2019; 4: e718
        • Klune C.B.
        • Larkin A.E.
        • Leung V.S.Y.
        • et al.
        Comparing the Rat Grimace Scale and a composite behaviour score in rats.
        PLoS One. 2019; 14: e0209467
        • Faller K.M.E.
        • McAndrew D.J.
        • Schneider J.E.
        • et al.
        Refinement of analgesia following thoracotomy and experimental myocardial infarction using the Mouse Grimace Scale.
        Exp Physiol. 2015; 100: 164-172https://doi.org/10.1113/expphysiol.2014.083139
        • Sotocinal S.G.
        • Sorge R.E.
        • Zaloum A.
        • et al.
        The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions.
        Mol Pain. 2011; 7: 55
        • Zhang E.Q.
        • Leung V.S.
        • Pang D.S.
        Influence of rater training on inter- and intrarater reliability when using the rat grimace scale.
        J Am Assoc Lab Anim Sci. 2019; 58: 178-183
        • National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals
        Recognition and alleviation of pain in laboratory animals.
        National Academies Press (US), 2009 (Available at:) (Accessed December 19, 2021)
        • Woodman D.D.
        Laboratory animal endocrinology: hormonal action, control mechanisms and interactions with drugs.
        Wiley, 1997 (Available at:) (Accessed December 20, 2021)
        • Hernandez-Avalos I.
        • Mota-Rojas D.
        • Mora-Medina P.
        • et al.
        Review of different methods used for clinical recognition and assessment of pain in dogs and cats.
        Int J Vet Sci Med. 2019; 7: 43-54
        • Prunier A.
        • Mounier L.
        • Le Neindre P.
        • et al.
        Identifying and monitoring pain in farm animals: a review.
        Animal. 2013; 7: 998-1010
        • Arras M.
        • Rettich A.
        • Seifert B.
        • et al.
        Should laboratory mice be anaesthetized for tail biopsy?.
        Lab Anim. 2007; 41: 30-45
        • Benedetti M.
        • Merino R.
        • Kusuda R.
        • et al.
        Plasma corticosterone levels in mouse models of pain.
        Eur J Pain. 2012; 16: 803-815
        • Vachon P.
        • Moreau J.P.
        Serum corticosterone and blood glucose in rats after two jugular vein blood sampling methods: comparison of the stress response.
        Contemp Top Lab Anim Sci. 2001; 40: 22-24
        • Gärtner K.
        • Büttner D.
        • Döhler K.
        • et al.
        Stress response of rats to handling and experimental procedures.
        Lab Anim. 1980; 14: 267-274
        • Abe R.
        • Shimosegawa T.
        • Kimura K.
        • et al.
        The role of endogenous glucocorticoids in rat experimental models of acute pancreatitis.
        Gastroenterology. 1995; 109: 933-943
        • Kojima K.
        • Naruse Y.
        • Iijima N.
        • et al.
        HPA-axis responses during experimental colitis in the rat.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R1348-R1355
        • Ghosal S.
        • Nunley A.
        • Mahbod P.
        • et al.
        Mouse handling limits the impact of stress on metabolic endpoints.
        Physiol Behav. 2015; 150: 31-37
        • Goldkuhl R.
        • Jacobsen K.R.
        • Kalliokoski O.
        • et al.
        Plasma concentrations of corticosterone and buprenorphine in rats subjected to jugular vein catheterization.
        Lab Anim. 2010; 44: 337-343
        • Sharp J.
        • Zammit T.
        • Azar T.
        • et al.
        Stress-like responses to common procedures in individually and group-housed female rats.
        Contemp Top Lab Anim Sci. 2003; 42: 9-18
        • Gallaher E.J.
        • Egner D.A.
        • Swen J.W.
        Automated remote temperature measurement in small animals using a telemetry/microcomputer interface.
        Comput Biol Med. 1985; 15: 103-110
        • Armario A.
        • Montero J.L.
        • Balasch J.
        Sensitivity of corticosterone and some metabolic variables to graded levels of low intensity stresses in adult male rats.
        Physiol Behav. 1986; 37: 559-561https://doi.org/10.1016/0031-9384(86)90285-4
        • De Boer S.F.
        • Koopmans S.J.
        • Slangen J.L.
        • et al.
        Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of interstressor interval length.
        Physiol Behav. 1990; 47: 1117-1124
        • Barrett A.M.
        • Stockham M.A.
        The effect of housing conditions and simple experimental procedures upon the corticosterone level in the plasma of rats.
        J Endocrinol. 1963; 26: 97-105
        • Balcombe J.P.
        • Barnard N.D.
        • Sandusky C.
        Laboratory routines cause animal stress.
        Contemp Top Lab Anim Sci. 2004; 43: 42-51
        • Rasmussen S.
        • Miller M.M.
        • Filipski S.B.
        • et al.
        Cage change influences serum corticosterone and anxiety-like behaviors in the mouse.
        J Am Assoc Lab Anim Sci. 2011; 50: 479-483
        • Sharp J.L.
        • Zammit T.G.
        • Azar T.A.
        • et al.
        Stress-like responses to common procedures in male rats housed alone or with other rats.
        Contemp Top Lab Anim Sci. 2002; 41: 8-14
        • Sharp J.L.
        • Zammit T.G.
        • Lawson D.M.
        Stress-like responses to common procedures in rats: effect of the estrous cycle.
        Contemp Top Lab Anim Sci. 2002; 41: 15-22
        • Duke J.L.
        • Zammit T.G.
        • Lawson D.M.
        The effects of routine cage-changing on cardiovascular and behavioral parameters in male Sprague-Dawley rats.
        Contemp Top Lab Anim Sci. 2001; 40: 17-20
        • Conn C.A.
        • Borer K.T.
        • Kluger M.J.
        Body temperature rhythm and response to pyrogen in exercising and sedentary hamsters.
        Med Sci Sports Exerc. 1990; 22: 636-642
        • Ferland C.L.
        • Schrader L.A.
        Cage mate separation in pair-housed male rats evokes an acute stress corticosterone response.
        Neurosci Lett. 2011; 489: 154-158
        • Raşid O.
        • Chirita D.
        • Iancu A.D.
        • et al.
        Assessment of routine procedure effect on breathing parameters in mice by using whole-body plethysmography.
        J Am Assoc Lab Anim Sci. 2012; 51: 469-474
        • Cinelli P.
        • Rettich A.
        • Seifert B.
        • et al.
        Comparative analysis and physiological impact of different tissue biopsy methodologies used for the genotyping of laboratory mice.
        Lab Anim. 2007; 41: 174-184
        • Siswanto H.
        • Hau J.
        • Carlsson H.E.
        • et al.
        Corticosterone concentrations in blood and excretion in faeces after ACTH administration in male Sprague-Dawley rats.
        Vivo. 2008; 22: 435-440
        • Pereira C.B.
        • Kunczik J.
        • Zieglowski L.
        • et al.
        Remote welfare monitoring of rodents using thermal imaging.
        Sensors (Basel). 2018; 18: E3653
        • Vainer B.G.
        A novel high-resolution method for the respiration rate and breathing waveforms remote monitoring.
        Ann Biomed Eng. 2018; 46: 960-971
        • Zhao F.
        • Li M.
        • Qian Y.
        • et al.
        Remote measurements of heart and respiration rates for telemedicine.
        PLoS One. 2013; 8: e71384
        • Kunczik J.
        • Barbosa Pereira C.
        • Zieglowski L.
        • et al.
        Remote vitals monitoring in rodents using video recordings.
        Biomed Opt Express. 2019; 10: 4422-4436
        • González-Sánchez C.
        • Fraile J.C.
        • Pérez-Turiel J.
        • et al.
        Capacitive sensing for non-invasive breathing and heart monitoring in non-restrained, non-sedated laboratory mice.
        Sensors (Basel). 2016; 16: E1052
        • Holton L.L.
        • Scott E.M.
        • Nolan A.M.
        • et al.
        Relationship between physiological factors and clinical pain in dogs scored using a numerical rating scale.
        J Small Anim Pract. 1998; 39: 469-474
        • Gleeson M.
        • Hawkins M.
        • Howerton C.L.
        • et al.
        Evaluating postoperative parameters in guinea pigs (cavia porcellus) following routine orchiectomy.
        J Exot Pet Med. 2016; 25: 242-252
        • Butz G.M.
        • Davisson R.L.
        Long-term telemetric measurement of cardiovascular parameters in awake mice: a physiological genomics tool.
        Physiol Genomics. 2001; 5: 89-97
        • Arras M.
        • Rettich A.
        • Cinelli P.
        • et al.
        Assessment of post-laparotomy pain in laboratory mice by telemetric recording of heart rate and heart rate variability.
        BMC Vet Res. 2007; 3: 16
        • Goecke J.C.
        • Awad H.
        • Lawson J.C.
        • et al.
        Evaluating postoperative analgesics in mice using telemetry.
        Comp Med. 2005; 55: 37-44
        • Taitt K.T.
        • Kendall L.V.
        Physiologic stress of ear punch identification compared with restraint only in mice.
        J Am Assoc Lab Anim Sci. 2019; 58: 438-442
        • Greene A.N.
        • Clapp S.L.
        • Alper R.H.
        Timecourse of recovery after surgical intraperitoneal implantation of radiotelemetry transmitters in rats.
        J Pharmacol Toxicol Methods. 2007; 56: 218-222
        • Oliver V.L.
        • Thurston S.E.
        • Lofgren J.L.
        Using cageside measures to evaluate analgesic efficacy in mice (mus musculus) after surgery.
        J Am Assoc Lab Anim Sci. 2018; 57: 186-201
        • Sherwin C.M.
        Observations on the prevalence of nest-building in non-breeding TO strain mice and their use of two nesting materials.
        Lab Anim. 1997; 31: 125-132
        • Deacon R.
        Assessing burrowing, nest construction, and hoarding in mice.
        J Vis Exp. 2012; 59: e2607
        • Nijsen M.J.M.A.
        • Ongenae N.G.H.
        • Coulie B.
        • et al.
        Telemetric animal model to evaluate visceral pain in the freely moving rat.
        Pain. 2003; 105: 115-123
        • Wassermann L.
        • Helgers S.O.A.
        • Riedesel A.K.
        • et al.
        Monitoring of heart rate and activity using telemetry allows grading of experimental procedures used in neuroscientific rat models.
        Front Neurosci. 2020; 14: 587760
        • Charlet A.
        • Rodeau J.L.
        • Poisbeau P.
        Radiotelemetric and symptomatic evaluation of pain in the rat after laparotomy: long-term benefits of perioperative ropivacaine care.
        J Pain. 2011; 12: 246-256
        • Roughan J.V.
        • Coulter C.A.
        • Flecknell P.A.
        • et al.
        The conditioned place preference test for assessing welfare consequences and potential refinements in a mouse bladder cancer model.
        PLoS One. 2014; 9: e103362
        • Roughan J.V.
        • Bertrand H.G.M.J.
        • Isles H.M.
        Meloxicam prevents COX-2-mediated post-surgical inflammation but not pain following laparotomy in mice.
        Eur J Pain. 2016; 20: 231-240
        • Bourque S.L.
        • Adams M.A.
        • Nakatsu K.
        • et al.
        Comparison of buprenorphine and meloxicam for postsurgical analgesia in rats: effects on body weight, locomotor activity, and hemodynamic parameters.
        J Am Assoc Lab Anim Sci. 2010; 49: 617-622
        • Clark J.A.
        • Myers P.H.
        • Goelz M.F.
        • et al.
        Pica behavior associated with buprenorphine administration in the rat.
        Lab Anim Sci. 1997; 47: 300-303
        • Allen M.
        • Johnson R.A.
        Evaluation of self-injurious behavior, thermal sensitivity, food intake, fecal output, and pica after injection of three buprenorphine formulations in rats (Rattus norvegicus).
        Am J Vet Res. 2018; 79: 697-703
        • Schaap M.W.H.
        • Uilenreef J.J.
        • Mitsogiannis M.D.
        • et al.
        Optimizing the dosing interval of buprenorphine in a multimodal postoperative analgesic strategy in the rat: minimizing side-effects without affecting weight gain and food intake.
        Lab Anim. 2012; 46: 287-292
        • Evenson E.A.
        • Mans C.
        Analgesic Efficacy and Safety of Hydromorphone in Chinchillas (Chinchilla lanigera).
        J Am Assoc Lab Anim Sci. 2018; 57: 282-285
        • Culpepper-Morgan J.
        • Kreek M.J.
        • Holt P.R.
        • et al.
        Orally administered kappa as well as mu opiate agonists delay gastrointestinal transit time in the guinea pig.
        Life Sci. 1988; 42: 2073-2077
        • Gould H.J.
        Complete Freund’s adjuvant-induced hyperalgesia: a human perception.
        Pain. 2000; 85: 301-303
        • De Rantere D.
        • Schuster C.J.
        • Reimer J.N.
        • et al.
        The relationship between the Rat Grimace Scale and mechanical hypersensitivity testing in three experimental pain models.
        Eur J Pain. 2016; 20: 417-426
        • Hess S.E.
        • Rohr S.
        • Dufour B.D.
        • et al.
        Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests.
        J Am Assoc Lab Anim Sci. 2008; 47: 25-31
        • Van de Weerd H.A.
        • Van Loo P.L.
        • Van Zutphen L.F.
        • et al.
        Preferences for nesting material as environmental enrichment for laboratory mice.
        Lab Anim. 1997; 31: 133-143
        • Deacon R.M.J.
        Assessing nest building in mice.
        Nat Protoc. 2006; 1: 1117-1119
        • Van Loo P.L.P.
        • Baumans V.
        The importance of learning young: the use of nesting material in laboratory rats.
        Lab Anim. 2004; 38: 17-24
        • Manser C.E.
        • Broom D.M.
        • Overend P.
        • et al.
        Operant studies to determine the strength of preference in laboratory rats for nest-boxes and nesting materials.
        Lab Anim. 1998; 32: 36-41
        • Jirkof P.
        • Fleischmann T.
        • Cesarovic N.
        • et al.
        Assessment of postsurgical distress and pain in laboratory mice by nest complexity scoring.
        Lab Anim. 2013; 47: 153-161
        • Lijam N.
        • Paylor R.
        • McDonald M.P.
        • et al.
        Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1.
        Cell. 1997; 90: 895-905
        • Torres-Lista V.
        • Giménez-Llort L.
        Impairment of nesting behaviour in 3xTg-AD mice.
        Behav Brain Res. 2013; 247: 153-157
        • Gallo M.S.
        • Karas A.Z.
        • Pritchett-Corning K.
        • et al.
        Tell-tale TINT: does the time to incorporate into nest test evaluate postsurgical pain or welfare in mice?.
        J Am Assoc Lab Anim Sci. 2020; 59: 37-45
        • Negus S.S.
        • Neddenriep B.
        • Altarifi A.A.
        • et al.
        Effects of ketoprofen, morphine, and kappa opioids on pain-related depression of nesting in mice.
        Pain. 2015; 156: 1153-1160
        • Rock M.L.
        • Karas A.Z.
        • Rodriguez K.B.G.
        • et al.
        The time-to-integrate-to-nest test as an indicator of wellbeing in laboratory mice.
        J Am Assoc Lab Anim Sci. 2014; 53: 24-28
        • Häger C.
        • Keubler L.M.
        • Biernot S.
        • et al.
        Time to Integrate to Nest Test Evaluation in a Mouse DSS-Colitis Model.
        PLoS One. 2015; 10: e0143824
        • Garner J.B.
        • Marshall L.S.
        • Boyer N.M.
        • et al.
        Effects of ketoprofen and morphine on pain-related depression of nestlet shredding in male and female mice.
        Front Pain Res (Lausanne). 2021; 2: 673940
        • Schwabe K.
        • Boldt L.
        • Bleich A.
        • et al.
        Nest-building performance in rats: impact of vendor, experience, and sex.
        Lab Anim. 2020; 54: 17-25
        • Jirkof P.
        Burrowing and nest building behavior as indicators of well-being in mice.
        J Neurosci Methods. 2014; 234: 139-146
        • Gaskill B.N.
        • Gordon C.J.
        • Pajor E.A.
        • et al.
        Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest.
        PLoS One. 2012; 7: e32799
        • Lee C.T.
        Genetic analyses of nest-building behavior in laboratory mice (Mus musculus).
        Behav Genet. 1973; 3: 247-256
        • Deacon R.M.J.
        • Croucher A.
        • Rawlins J.N.P.
        Hippocampal cytotoxic lesion effects on species-typical behaviours in mice.
        Behav Brain Res. 2002; 132: 203-213
        • Deacon R.M.J.
        Burrowing in rodents: a sensitive method for detecting behavioral dysfunction.
        Nat Protoc. 2006; 1: 118-121
        • Andrews N.
        • Legg E.
        • Lisak D.
        • et al.
        Spontaneous burrowing behaviour in the rat is reduced by peripheral nerve injury or inflammation associated pain.
        Eur J Pain. 2012; 16: 485-495
        • Jirkof P.
        • Leucht K.
        • Cesarovic N.
        • et al.
        Burrowing is a sensitive behavioural assay for monitoring general wellbeing during dextran sulfate sodium colitis in laboratory mice.
        Lab Anim. 2013; 47: 274-283
        • Bryden L.A.
        • Nicholson J.R.
        • Doods H.
        • et al.
        Deficits in spontaneous burrowing behavior in the rat bilateral monosodium iodoacetate model of osteoarthritis: an objective measure of pain-related behavior and analgesic efficacy.
        Osteoarthritis Cartilage. 2015; 23: 1605-1612
        • Jirkof P.
        • Cesarovic N.
        • Rettich A.
        • et al.
        Burrowing behavior as an indicator of post-laparotomy pain in mice.
        Front Behav Neurosci. 2010; 4: 165
        • Gould S.A.
        • Doods H.
        • Lamla T.
        • et al.
        Pharmacological characterization of intraplantar Complete Freund’s Adjuvant-induced burrowing deficits.
        Behav Brain Res. 2016; 301: 142-151
        • Rutten K.
        • Gould S.A.
        • Bryden L.
        • et al.
        Standard analgesics reverse burrowing deficits in a rat CCI model of neuropathic pain, but not in models of type 1 and type 2 diabetes-induced neuropathic pain.
        Behav Brain Res. 2018; 350: 129-138
        • Rutten K.
        • Robens A.
        • Read S.J.
        • et al.
        Pharmacological validation of a refined burrowing paradigm for prediction of analgesic efficacy in a rat model of sub-chronic knee joint inflammation.
        Eur J Pain. 2014; 18: 213-222
        • Rutten K.
        • Schiene K.
        • Robens A.
        • et al.
        Burrowing as a non-reflex behavioural readout for analgesic action in a rat model of sub-chronic knee joint inflammation.
        Eur J Pain. 2014; 18: 204-212
        • Deacon R.M.J.
        Burrowing: a sensitive behavioural assay, tested in five species of laboratory rodents.
        Behav Brain Res. 2009; 200: 128-133
        • McLinden K.A.
        • Kranjac D.
        • Deodati L.E.
        • et al.
        Age exacerbates sickness behavior following exposure to a viral mimetic.
        Physiol Behav. 2012; 105: 1219-1225
        • de Sousa A.A.
        • Reis R.
        • Bento-Torres J.
        • et al.
        Influence of enriched environment on viral encephalitis outcomes: behavioral and neuropathological changes in albino Swiss mice.
        PLoS One. 2011; 6: e15597
        • Deacon R.M.
        • Raley J.M.
        • Perry V.H.
        • et al.
        Burrowing into prion disease.
        Neuroreport. 2001; 12: 2053-2057
        • Deacon R.M.J.
        • Rawlins J.N.P.
        Hippocampal lesions, species-typical behaviours and anxiety in mice.
        Behav Brain Res. 2005; 156: 241-249
        • Whittaker A.L.
        • Lymn K.A.
        • Nicholson A.
        • et al.
        The assessment of general well-being using spontaneous burrowing behaviour in a short-term model of chemotherapy-induced mucositis in the rat.
        Lab Anim. 2015; 49: 30-39
        • Teeling J.L.
        • Felton L.M.
        • Deacon R.M.J.
        • et al.
        Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines.
        Brain Behav Immun. 2007; 21: 836-850
        • Teeling J.L.
        • Cunningham C.
        • Newman T.A.
        • et al.
        The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: implications for a role of COX-1.
        Brain Behav Immun. 2010; 24: 409-419
        • Püntener U.
        • Booth S.G.
        • Perry V.H.
        • et al.
        Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia.
        J Neuroinflammation. 2012; 9: 146
        • Muralidharan A.
        • Kuo A.
        • Jacob M.
        • et al.
        Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain.
        Front Behav Neurosci. 2016; 10: 88
        • Bangsgaard Bendtsen K.M.
        • Krych L.
        • Sørensen D.B.
        • et al.
        Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse.
        PLoS One. 2012; 7: e46231
        • Lavin D.N.
        • Joesting J.J.
        • Chiu G.S.
        • et al.
        Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents.
        Obesity (Silver Spring). 2011; 19: 1586-1594
        • Christensen S.L.T.
        • Petersen S.
        • Sørensen D.B.
        • et al.
        Infusion of low dose glyceryl trinitrate has no consistent effect on burrowing behavior, running wheel activity and light sensitivity in female rats.
        J Pharmacol Toxicol Methods. 2016; 80: 43-50
      3. Approach 1: monitoring behaviour using an ethogram | NC3Rs.
        (Available at:) (Accessed December 23, 2021)
        • Oliver V.L.
        • Athavale S.
        • Simon K.E.
        • et al.
        Evaluation of pain assessment techniques and analgesia efficacy in a female guinea pig (cavia porcellus) model of surgical pain.
        J Am Assoc Lab Anim Sci. 2017; 56: 425-435
        • Miller A.L.
        • Leach M.C.
        The mouse grimace scale: a clinically useful tool?.
        PLoS One. 2015; 10: e0136000
        • Roughan J.V.
        • Flecknell P.A.
        Training in behaviour-based post-operative pain scoring in rats—An evaluation based on improved recognition of analgesic requirements.
        Appl Anim Behav Sci. 2006; 96: 327-342
        • Affaitati G.
        • Giamberardino M.A.
        • Lerza R.
        • et al.
        Effects of tramadol on behavioural indicators of colic pain in a rat model of ureteral calculosis.
        Fundam Clin Pharmacol. 2002; 16: 23-30
      4. Norway Rat Behavior Repertoire.
        (Available at:) (Accessed December 23, 2021)
        • Garner Laboratory, Stanford School of Medicine
        Mouse Ethograms.
        (Available at:) (Accessed December 23, 2021)
        • Buisman M.
        • Hasiuk M.M.M.
        • Gunn M.
        • et al.
        The influence of demeanor on scores from two validated feline pain assessment scales during the perioperative period.
        Vet Anaesth Analg. 2017; 44: 646-655
        • Buisman M.
        • Wagner M.C.
        • Hasiuk M.M.
        • et al.
        Effects of ketamine and alfaxalone on application of a feline pain assessment scale.
        J Feline Med Surg. 2016; 18: 643-651
        • Dunbar M.L.
        • David E.M.
        • Aline M.R.
        • et al.
        Validation of a behavioral ethogram for assessing postoperative pain in guinea pigs (Cavia porcellus).
        J Am Assoc Lab Anim Sci. 2016; 55: 29-34
        • Ellen Y.
        • Flecknell P.
        • Leach M.
        Evaluation of using behavioural changes to assess post-operative pain in the guinea pig (cavia porcellus).
        PLoS One. 2016; 11: e0161941
        • Ponzio M.F.
        • Monfort S.L.
        • Busso J.M.
        • et al.
        Adrenal activity and anxiety-like behavior in fur-chewing chinchillas (Chinchilla lanigera).
        Horm Behav. 2012; 61: 758-762
        • Edmunson A.M.
        • Boynton F.D.D.
        • Rendahl A.K.
        • et al.
        Indicators of postoperative pain in Syrian hamsters (mesocricetus auratus).
        Comp Med. 2021; 71: 76-85
      5. National centre for the replacement refinement and reduction of animals in research. grimace scales. grimace scales.
        (Available at:) (Accessed January 9, 2022)
      6. Pang, Daniel. RGS Training Manual.
        (Available at:) (Accessed January 11, 2022)
        • Schneider L.E.
        • Henley K.Y.
        • Turner O.A.
        • et al.
        Application of the rat grimace scale as a marker of supraspinal pain sensation after cervical spinal cord injury.
        J Neurotrauma. 2017; 34: 2982-2993
        • Leung V.
        • Zhang E.
        • Pang D.S.
        Real-time application of the Rat Grimace Scale as a welfare refinement in laboratory rats.
        Sci Rep. 2016; 6: 31667
        • Hohlbaum K.
        • Bert B.
        • Dietze S.
        • et al.
        Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice—Assessing the degree of distress.
        PLoS One. 2017; 12: e0179588
        • Miller A.
        • Kitson G.
        • Skalkoyannis B.
        • et al.
        The effect of isoflurane anaesthesia and buprenorphine on the mouse grimace scale and behaviour in CBA and DBA/2 mice.
        Appl Anim Behav Sci. 2015; 172: 58-62
        • Miller A.L.
        • Golledge H.D.R.
        • Leach M.C.
        The Influence of Isoflurane Anaesthesia on the Rat Grimace Scale.
        PLoS One. 2016; 11: e0166652
        • Hohlbaum K.
        • Bert B.
        • Dietze S.
        • et al.
        Impact of repeated anesthesia with ketamine and xylazine on the well-being of C57BL/6JRj mice.
        PLoS One. 2018; 13: e0203559
        • Lester L.S.
        • Fanselow M.S.
        Exposure to a cat produces opioid analgesia in rats.
        Behav Neurosci. 1985; 99: 756-759
        • Sorge R.E.
        • Martin L.J.
        • Isbester K.A.
        • et al.
        Olfactory exposure to males, including men, causes stress and related analgesia in rodents.
        Nat Methods. 2014; 11: 629-632
        • Matsumiya L.C.
        • Sorge R.E.
        • Sotocinal S.G.
        • et al.
        Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice.
        J Am Assoc Lab Anim Sci. 2012; 51: 42-49
        • Defensor E.B.
        • Corley M.J.
        • Blanchard R.J.
        • et al.
        Facial expressions of mice in aggressive and fearful contexts.
        Physiol Behav. 2012; 107: 680-685
        • Bateson P.
        Assessment of pain in animals.
        Anim Behav. 1991; 42: 827-839
        • Turner P.V.
        • Pang D.S.
        • Lofgren J.L.
        A review of pain assessment methods in laboratory rodents.
        Comp Med. 2019; 69: 451-467
        • Sperry M.M.
        • Yu Y.H.
        • Welch R.L.
        • et al.
        Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model.
        Sci Rep. 2018; 8: 13894
        • Karlsson F.
        Critical Anthropomorphism and Animal Ethics.
        J Agric Environ Ethics. 2012; 25: 707-720
        • Tuttle A.H.
        • Molinaro M.J.
        • Jethwa J.F.
        • et al.
        A deep neural network to assess spontaneous pain from mouse facial expressions.
        Mol Pain. 2018; 14 (1744806918763658)
        • Andresen N.
        • Wöllhaf M.
        • Hohlbaum K.
        • et al.
        Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: starting with facial expression analysis.
        PLoS One. 2020; 15: e0228059
        • Zhang H.
        • Lecker I.
        • Collymore C.
        • et al.
        Cage-lid hanging behavior as a translationally relevant measure of pain in mice.
        Pain. 2021; 162: 1416-1425
        • Batavia M.
        • Nguyen G.
        • Harman K.
        • et al.
        Hibernation patterns of Turkish hamsters: influence of sex and ambient temperature.
        J Comp Physiol B. 2013; 183: 269-277
        • Horwitz B.A.
        • Chau S.M.
        • Hamilton J.S.
        • et al.
        Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters.
        Am J Physiol Regul Integr Comp Physiol. 2013; 7: R759-R768