Advertisement

Pain Recognition in Reptiles

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Exotic Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • MacRae A.M.
        • Makowska I.J.
        • Fraser D.
        Initial evaluation of facial expressions and behaviours of harbour seal pups (Phoca vitulina) in response to tagging and microchipping.
        Appl Anim Behav Sci. 2018; 205: 167-174
        • Mogil J.S.
        • Pang D.S.
        • Dutra G.G.
        • et al.
        The development and use of facial grimace scales for pain measurement in animals.
        Neurosci Biobehav Rev. 2020; 116: 480-493
        • Neurology A.
        Biology of the reptilia. 9. Academic Press, London1979: 1-462
        • Neurology B.
        Biology of the reptilia. 10. Academic Press, London1979: 1-388
        • Neurology C.
        Sensorimotor Integration.
        in: Biol reptilia. 17. The University Of Chicago Press, Chicago1992: 1-781
        • Williams C.J.
        • James L.E.
        • Bertelsen M.F.
        • et al.
        Analgesia for non-mammalian vertebrates.
        Curr Opin Physiol. 2019; 11: 75-84
        • ten Donkelaar H.J.
        Organization of descending pathways to the spinal cord in amphibians and reptiles.
        Prog Brain Res. 1982; 57: 25-67
        • ten Donkelaar H.J.
        Descending pathways to the spinal cord in tetrapods: A brief outline.
        in: Development and regenerative capacity of descending supraspinal pathways in tetrapods- A comparative approach. Springer, Berlin2000: 9-13
        • Bangma G.C.
        • Donkelaar H.T.
        Afferent connections of the cerebellum in various types of reptiles.
        J Comp Neurol. 1982; 207: 255-273
        • Henselmans J.M.
        • Hoogland P.V.
        • Stoof J.C.
        Differences in the regulation of acetylcholine release upon D2 dopamine and N-methyl-D-aspartate receptor activation between the striatal complex of reptiles and the neostriatum of rats.
        Brain Res. 1991; 566: 8-12
        • Martınez-Garcıa F.
        • Novejarque A.
        • Lanuza E.
        The evolution of the amygdala in vertebrates.
        in: Kass J. Streidter G.F. Evolutionary neuroscience. 1st edition. Academic Press, Oxford2009: 313-392
        • Lohman A.H.
        • Smeets W.J.
        The dorsal ventricular ridge and cortex of reptiles in historical and phylogenetic perspective.
        in: The neocortex. Springer, Boston1991: 59-74
        • Shimizu T.
        • Karten H.J.
        Multiple origins of neocortex: Contributions of the dorsal ventricular ridge.
        in: The neocortex 1991. Springer, Boston1991: 75-86
        • Aboitiz F.
        Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge-evolutionary considerations.
        Cereb Cortex. 1999; 9: 783-791
        • Güntürkün O.
        • Stacho M.
        • Ströckens F.
        The brains of reptiles and birds.
        in: Kass J. Evolutionary neuroscience. 2nd edition. Academic Press, Cambridge2020: 159-212
        • Naumann R.K.
        • Laurent G.
        Function and evolution of the reptilian cerebral cortex.
        in: Kass J. Evolutionary neuroscience. 2nd edition. Academic Press, Cambridge2020: 213-245
        • Balaban C.D.
        • Ulinski P.S.
        Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei.
        J Comp Neurol. 1981; 200: 95-129
        • Balaban C.D.
        • Ulinski P.S.
        Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. II. Properties of the rotundo-dorsal map.
        J Comp Neurol. 1981; 200: 131-150
        • Goldby F.
        • Robinson L.R.
        The central connections of dorsal spinal nerve roots and the ascending tracts in the spinal cord of Lacerta viridis.
        J Anat. 1962; 96: 153-170
        • Hartline J.T.
        • Smith A.N.
        • Kabelik D.
        Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei.
        Peer J. 2017; 5 (Available at) (Accessed December 15, 2021): 3331
        • Lanuza E.
        • Belekhova M.
        • Martínez-Marcos A.
        • et al.
        Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard Podarcis hispanica.
        Euro J Neurosci. 1998; 10: 3517-3534
        • Guirado S.
        • Dávila J.C.
        • Real M.Á.
        • et al.
        Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard.
        J Comp Neurol. 2000; 424: 216-232
        • Novejarque A.
        • Lanuza E.
        • Martínez-García F.
        Amygdalostriatal projections in reptiles: A tract-tracing study in the lizard Podarcis hispanica.
        J Comp Neurol. 2004; 479: 287-308
        • Díaz C.
        • Yanes C.
        • Medina L.
        • et al.
        Golgi study of the anterior dorsal ventricular ridge in a lizard. I. Neuronal typology in the adult.
        J Morph. 1990; 203: 293-300
        • Díaz C.
        • Yanes C.
        • Medina L.
        • et al.
        Golgi study of the anterior dorsal ventricular ridge in a lizard. II. Neuronal cytodifferentiation.
        J Morph. 1990; 203: 301-310
        • Wolters J.G.
        • De Boer-Van Huizen R.
        • ten Donkelaar H.J.
        Funicular trajectories of descending brain stem pathways in a lizard (Varanus exanthematicus).
        Prog Brain Res. 1982; 57: 69-78
        • Hoogland P.V.
        Spinothalamic projections in a lizard, Varanus exanthematicus: An HRP study.
        J Comp Neurol. 1981; 198: 7-12
        • Wolters J.G.
        • ten Donkelaar H.J.
        • Steinbusch H.W.
        • et al.
        Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study.
        Neurosci. 1985; 14: 169-193
        • Challet E.
        • Pierre J.
        • Repérant J.
        • et al.
        The serotoninergic system of the brain of the viper, Vipera aspis. An immunohistochemical study.
        J Chem Neuroanat. 1991; 4: 233-248
        • ten Donkelaar H.J.
        • Bangma G.C.
        • De Boer-Van Huizen R.
        Reticulospinal and vestibulospinal pathways in the snake Python regius.
        Anat Embryol. 1983; 168: 277-289
        • Ulinski P.S.
        Organization of anterior dorsal ventricular ridge in snakes.
        J Comp Neurol. 1978; 178: 411-449
        • Ebbesson S.O.
        • Goodman D.C.
        Organization of ascending spinal projections in Caiman crocodilus.
        Cell Tissue Res. 1981; 215: 383-395
        • Rodrigues S.L.
        • Maseko B.C.
        • Ihunwo A.O.
        • et al.
        Nuclear organization and morphology of serotonergic neurons in the brain of the Nile crocodile, Crocodylus niloticus.
        J Chem Neuroanat. 2008; 35: 133-145
        • Clark J.M.
        • Ulinski P.S.
        A Golgi study of anterior dorsal ventricular ridge in the alligator, Alligator mississippiensis.
        J Morph. 1984; 179: 153-174
        • Reiner A.
        • Northcutt R.G.
        Succinic dehydrogenase histochemistry reveals the location of the putative primary visual and auditory areas within the dorsal ventricular ridge of Sphenodon punctatus.
        Brain Behav Evol. 2000; 55: 26-36
        • Perry S.M.
        • Nevarez J.G.
        Pain and its control in reptiles.
        Vet Clin North Am Exot Anim Pract. 2018; 21: 1-6
        • Serinelli I.
        • Soloperto S.
        • Lai O.R.
        Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art.
        Animals. 2022; 12 (Available at) (Accessed March 18,2022): 697
        • Fowler M.
        • Medina L.
        • Reiner A.
        Immunohistochemical localization of NMDA-and AMPA-type glutamate receptor subunits in the basal ganglia of red-eared turtles.
        Brain Behav Evol. 1999; 54: 276-289
        • Liang Y.F.
        • Terashima S.I.
        Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-δ peripheral axons in the trigeminal ganglia of crotaline snakes.
        J Comp Neurol. 1993; 328: 88-102
        • Liang Y.F.
        • Terashima S.I.
        • Zhu A.Q.
        Distinct morphological characteristics of touch, temperature, and mechanical nociceptive neurons in the crotaline trigeminal ganglia.
        J Comp Neurol. 1995; 360: 621-633
        • Terashima S.I.
        • Liang Y.F.
        Touch and vibrotactile neurons in a crotaline snake's trigeminal ganglia.
        Somatosens Mot Res. 1994; 11: 169-181
        • Terashima S.I.
        • Zhu A.Q.
        Single Versus Repetitive Spiking to the Current Stimulus of A-β Mechanosensitive Neurons in the Crotaline Snake Trigeminal Ganglion.
        Cell Mol Neurobiol. 1997 Apr; 17: 195-206
        • Bryant B.P.
        • Kraus F.
        Neural basis of trigeminal chemo-and thermonociception in brown treesnakes, Boiga irregularis.
        J Comp Neurol A. 2018; 204: 677-686
        • James L.E.
        • Williams C.J.
        • Bertelsen M.F.
        • et al.
        Evaluation of feeding behavior as an indicator of pain in snakes.
        J Zoo Wildl Med. 2017; 48: 196-199
        • ten Donkelaar H.J.
        • de Boer-van Huizen R.
        A possible pain control system in a non-mammalian vertebrate (a lizard, Gekko gecko).
        Neurosci Lett. 1987; 83: 65-70
        • Makau C.M.
        • Towett P.K.
        • Abelson K.S.
        • et al.
        Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii).
        J Vet Pharmacol Ther. 2017; 40: 439-446
        • Martínez-García F.
        • Lanuza E.
        Evolution of vertebrate survival circuits.
        Curr Opin Behav Sci. 2018; 24: 113-123
        • Rothll T.C.
        • Krochmal A.R.
        • LaDage L.D.
        Reptilian cognition- a more complex picture via integration of neurological mechanisms, behavioral constraints, and evolutionary context.
        BioEssays. 2019; 41 (1900033): 1-9
        • Burghardt G.M.
        Editorial: Journal of Comparative Psychology.
        J Comp Psychol. 2006; 120: 77-78
        • Burghardt G.M.
        How comparative was (is) the Journal of Comparative Psychology? A reptilian perspective.
        J Comp Psychol. 2021; 135: 286-290
        • Posner L.P.
        • Chinnadurai S.K.
        Recognition and treatment of pain in reptiles, amphibians, and fish.
        in: Love L.C.M. Tom Doherty T. Pain Recognition in veterinary practice. 1st edition. Blackwell Publishing, Ames2014: 417-423
        • Schilliger L.
        • Vergneau-Grosset C.
        • Desmarchelier M.R.
        Clinical Reptile Behavior.
        Vet Clin North Am Exot Anim Pract. 2021; 24: 175-195
        • Sladky K.K.
        • Mans C.
        Analgesia.
        in: Divers S.J. Stahl S.J. Mader’s reptile and Amphibian medicine and Surgery. 3rd edition. Elsevier Health Sciences, Cambridge2019: 465-474
        • Bradbury G.
        • Morton K.
        Using behavioural science to improve pain management.
        Practice. 2017; 39: 339-341
        • Warwick C.
        • Arena P.
        • Lindley S.
        • et al.
        Assessing reptile welfare using behavioural criteria.
        Practice. 2013; 35: 123-131
        • Read M.R.
        Evaluation of the use of anesthesia and analgesia in reptiles.
        J Am Vet Med Assoc. 2004; 224: 547-552
        • Ayers H.
        Pain recognition in reptiles and investigation of associated behavioural signs.
        The Vet Nurse. 2016; 7: 292-300
      1. Latney LV. University of Pennsylvania Reptile Pain Behavior, An Observational Study. 2010. Unpublished data.

        • Kinney M.E.
        • Johnson S.M.
        • Sladky K.K.
        Behavioral evaluation of red-eared slider turtles (Trachemys scripta elegans) administered either morphine or butorphanol following unilateral gonadectomy.
        J Herpetol Med Surg. 2011; 21: 54-62
        • Williams C.J.
        • James L.E.
        • Bertelsen M.F.
        • et al.
        Tachycardia in response to remote capsaicin injection as a model for nociception in the ball python (Python regius).
        Vet Anaesth Analg. 2016; 43: 429-434
        • Makau C.M.
        • Towett P.K.
        • Abelson K.S.
        • et al.
        Modulation of nociception by amitriptyline hydrochloride in the Speke’s hinge-back tortoise (Kiniskys spekii).
        Vet Med Sci. 2021; 7: 1034-1041
        • Kanui T.I.
        • Hole K.
        • Miaron J.O.
        Nociception in crocodiles: capsaicin instillation, formalin and hot plate tests.
        Zool Sci. 1990; 7 (Available at) (Accessed December 14, 2021): 537-540